2017
DOI: 10.1007/s00526-017-1271-0
|View full text |Cite
|
Sign up to set email alerts
|

Bubbling analysis for approximate Lorentzian harmonic maps from Riemann surfaces

Abstract: For a sequence of approximate harmonic maps (u n , v n ) (meaning that they satisfy the harmonic system up to controlled error terms) from a compact Riemann surface with smooth boundary to a standard static Lorentzian manifold with bounded energy, we prove that identities for the Lorentzian energy hold during the blow-up process. In particular, in the special case where the Lorentzian target metric is of the form g N −βdt 2 for some Riemannian metric g N and some positive function β on N , we prove that such i… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
9
0
3

Year Published

2018
2018
2024
2024

Publication Types

Select...
5

Relationship

2
3

Authors

Journals

citations
Cited by 7 publications
(12 citation statements)
references
References 25 publications
0
9
0
3
Order By: Relevance
“…In this paper, we shall answer the above two questions for (approximate) Dirac-harmonic maps into certain Lorentzian manifolds, which generalize the results in the case of harmonic maps [12,13].…”
Section: Introductionmentioning
confidence: 66%
“…In this paper, we shall answer the above two questions for (approximate) Dirac-harmonic maps into certain Lorentzian manifolds, which generalize the results in the case of harmonic maps [12,13].…”
Section: Introductionmentioning
confidence: 66%
“…Combing this with the small energy regularity theory for approximate Lorentzian harmonic maps (see Lemma 2.1 and Lemma 2.2 in [10]), we know that there exist a positive constant ǫ ′ depending only on λ, Λ, N × R, a finite points set…”
Section: According Tomentioning
confidence: 92%
“…另外, 我们还期望了解爆破出的泡 泡之间是否有脖子连接并估计脖子的长度. 当目标流形是稳态流形时, 这些问题比较复杂, 所以, Han 等 [49] 同时研究了稳态和静态流形两种情形, 他们对目标流形为稳态流形的渐近 Lorentz 调和映射序 列的爆破行为给出了部分刻画, 对静态情形给出了完整刻画. 渐近 Lorentz 调和映射序列的相关结果 更为一般, 可以自然地推广到热流的情形.…”
Section: 爆破分析unclassified
“…渐近 Lorentz 调和映射序列的相关结果 更为一般, 可以自然地推广到热流的情形. 在文献 [49] 中, 因为还要处理边界爆破的情形, 所以, 我们 舍弃了 Hopf 微分的办法, 取而代之的是通过对 Lorentz 调和映射方程结构的观察, 利用分部积分得到 某种 Pohozaev 型等式, 由此可以给出径向能量与切向能量之间的关系. 在经典调和映射的爆破分析 中, Pohozaev 型等式最早由 Wang 和 Lin [50] 引入.…”
Section: 爆破分析unclassified
See 1 more Smart Citation