We present a model of ultrasonic metafluids -acoustic metamaterials in the form of suspensions of discrete microscopic oscillators coupled to the embedding fluid. Contrary to a common assumption about metamaterials, and as already established in the field of metafluids, the metafluid concept need not be based on position periodicity or correlation of the suspended micro-oscillators, and in this case not even on ideally designed micro-oscillators. For the speculation that metafluids may one day be produced as solutions of macromolecules, it is essential that the micro-oscillators be allowed to be randomly distributed in the host fluid and generally have irregular (modal) shapes. We formulate the detailed operating principle of such a metafluid model, give explicit formulae for its effective dynamic moduli in terms of the modal structure of the micro-oscillators, and discuss basic practical issues of performance optimization in terms of their mass and size.