In this article, the free vibration of a functionally graded carbon nanotube-reinforced plate with central hole is investigated by means of the independent coordinates-based Rayleigh-Ritz method. For the proposed method, the kinematic and potential energies are substituted into Lagrange's equation in order to obtain the equation of motion. However, the total energies are computed by the difference of energies between the hole domain and the plate domain. By applying the displacement matching condition at the hole domain, two coordinate systems are coupled. For the Rayleigh-Ritz method, the mode shape functions of uniform beams are assumed as admissible functions. By this method, convergent results can be obtained with certain number of terms of admissible functions. The present results clearly reflect the effects of the carbon nanotube distribution type, carbon nanotube volume fraction, hole size, and boundary condition on the nondimensional natural frequencies. The provided results show that the present method is efficient in studying the vibration problems of functionally graded carbon nanotube-reinforced plate with central hole.