Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Societal Impact StatementBhutan is an ancient kingdom in the Himalayan range and one of the most rugged, geodiverse, and mountainous agricultural countries in the world. Historically secluded and geographically isolated, Bhutan is a hotspot for Himalayan agrobiodiversity where small‐scale agriculture supports the livelihoods of a large share of the resident population. Here, Bhutanese maize agrobiodiversity is explored to unlock its adaptation potential using genomics and participatory variety selection in combination with climate research. We show that Bhutanese traditional farmers maintain a wealth of diversity that may support the sustainable intensification of maize cropping in the Himalayas and beyond.Summary Bhutan, an ancient kingdom enshrouded in the Himalayas, hosts largely untapped agrobiodiversity that may harness genetic variation useful for adaptation to local climates and user needs. Here, we genotyped‐by‐sequencing 351 pooled samples of local maize (Zea mays L.) landraces, the entire collection of the Bhutan National Gene Bank, comparing their genomic diversity with maize from other countries in the Himalayan range. We reconstructed the adaptation of Bhutanese maize to historical and projected climates, identifying areas of future maladaptation. We then run a common garden experiment involving local smallholder farmers in a participatory evaluation of landraces' performance, aiming at the identification of quantitative trait nucleotides (QTNs) contributing to adaptation, performance, and farmers' choice. We found that Bhutanese maize agrobiodiversity is unique in the Himalayan range, and a locus on Chromosome 5 supports the differentiation of three distinct genetic clusters. We found that a portion of current genomic diversity can be associated with the Bhutanese landscape and that maize cultivation in the southwest of the country may be negatively impacted by projected climates. We also found that Bhutanese maize agrobiodiversity is large and may contribute to adaptation and improvement. A genome‐wide association study identified 117 QTNs for climatic adaptation, agronomic performance, and farmers' preferences. Our results show that Bhutanese maize landraces are a unique source of genetic agrobiodiversity for local adaptation. We found that the integration of genomics, climate science, and participatory methods can speed up the identification of genetic factors contributing to the sustainable intensification of maize cultivation in the Himalayas and beyond.
Societal Impact StatementBhutan is an ancient kingdom in the Himalayan range and one of the most rugged, geodiverse, and mountainous agricultural countries in the world. Historically secluded and geographically isolated, Bhutan is a hotspot for Himalayan agrobiodiversity where small‐scale agriculture supports the livelihoods of a large share of the resident population. Here, Bhutanese maize agrobiodiversity is explored to unlock its adaptation potential using genomics and participatory variety selection in combination with climate research. We show that Bhutanese traditional farmers maintain a wealth of diversity that may support the sustainable intensification of maize cropping in the Himalayas and beyond.Summary Bhutan, an ancient kingdom enshrouded in the Himalayas, hosts largely untapped agrobiodiversity that may harness genetic variation useful for adaptation to local climates and user needs. Here, we genotyped‐by‐sequencing 351 pooled samples of local maize (Zea mays L.) landraces, the entire collection of the Bhutan National Gene Bank, comparing their genomic diversity with maize from other countries in the Himalayan range. We reconstructed the adaptation of Bhutanese maize to historical and projected climates, identifying areas of future maladaptation. We then run a common garden experiment involving local smallholder farmers in a participatory evaluation of landraces' performance, aiming at the identification of quantitative trait nucleotides (QTNs) contributing to adaptation, performance, and farmers' choice. We found that Bhutanese maize agrobiodiversity is unique in the Himalayan range, and a locus on Chromosome 5 supports the differentiation of three distinct genetic clusters. We found that a portion of current genomic diversity can be associated with the Bhutanese landscape and that maize cultivation in the southwest of the country may be negatively impacted by projected climates. We also found that Bhutanese maize agrobiodiversity is large and may contribute to adaptation and improvement. A genome‐wide association study identified 117 QTNs for climatic adaptation, agronomic performance, and farmers' preferences. Our results show that Bhutanese maize landraces are a unique source of genetic agrobiodiversity for local adaptation. We found that the integration of genomics, climate science, and participatory methods can speed up the identification of genetic factors contributing to the sustainable intensification of maize cultivation in the Himalayas and beyond.
Following the introduction of Buddhism to China, various strategies of accommodation with Chinese culture were developed, all amounting to some form of syncretism with Chinese religions, mainly Confucianism. Buddhism in pre-modern Korea displayed similar forms of interaction with Confucianism. This article aims to critique the notion that such interactions were merely forms of “harmonization”, finding common ground between the traditions. If one religion borrows from another or adopts the message of another religion, it will be affected to some degree, which is why the concept of syncretism is a better tool of analysis. This article concludes that there was a strong official support in Goryeo Korea towards the genuine convergence of Confucianism and Buddhism. Since Buddhism, as a result, took on many of the tasks carried out by Confucianism in China, the reaction against Buddhism by a reinvigorated Confucianism from the late fourteenth century onward was much stronger than in China.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.