Petunia hybrida Hort. “Easy Wave Pink”, a qualitative long-day plant (LDP), was investigated to study the effects of the night interruption light (NIL) provided by light-emitting diodes (LEDs) quality shifting on the morphogenesis, blooming, and transcription of photoreceptor genes. Plants were grown in a closed-type plant factory employing white (W) LEDs at an intensity of 180 μmol·m−2·s−1 PPFD provided for short day (SD, 10 h light, 14 h dark), long day (LD, 16 h light, 8 h dark), or SD with 4 h night interruption (NI) with LEDs at an intensity of 10 μmol·m−2·s−1 PPFD. The NIL quality was shifted from one light spectrum to another after the first 2 h of NI. Light treatments consisting of all possible pairings of W, far-red (Fr), red (R), and blue (B) light were tested. The SD and LD were referenced as the control, while 12 NI treatments involved altering LED NIL qualities, as follows: from R to B (NI-RB), from B to R (NI-BR), from Fr to R (NI-FrR), from R to Fr (NI-RFr), from Fr to B (NI-FrB), from B to Fr (NI-BFr), from B to W (NI-BW), from W to B (NI-WB), from W to Fr (NI-WFr), from Fr to W (NI-FrW), from W to R (NI-WR), and from R to W (NI-RW). The NI-RFr resulted in the longest shoots, while the NI-WR and NI-RW resulted in the shortest shoots. NI-WR, NI-RW, NI-BW, NI-WB, NI-RFr, NI-RB, NI-BR, and LD all exhibited flowering. High-level expressions of photoreceptor genes were confirmed in the NI-RFr, NI-FrR, NI-BFr, NI-RW, and NI-WR treatments. Morphogenesis and blooming were both impacted by the photoperiod. The first NIL had no effects on the flowering or the morphogenesis, but the second NIL had a profound impact on both.