Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details. Eaton's method in reverse, and then to estimate pore pressure in offset wells using Eaton's method conventionally. We tested this procedure for Cretaceous mudstones at Haltenbanken. The results were inconsistent because the sonic log responds differently to disequilibrium compaction overpressure and unloading overpressure, and their relative contributions vary across the basin. In theory, a two-step method using the density and sonic logs could estimate the contributions to overpressure from disequilibrium compaction and unloading. The normal compaction trend for density should be the normal compaction trend at the maximum effective stress the mudstones have experienced, not at hydrostatic effective stress. We advocate the Budge-Fudge approach as a starting point for pore pressure estimation in diagenetically altered mudstones, a two-step method 2 that requires geological input to help estimate the overpressure contribution from disequilibrium compaction. In principle, the Budge-Fudge approach could be used to estimate the normal compaction trend for mudstones at the maximum effective stress they have experienced, and so form the basis of the full two-step method through the use of offset wells. Our initial efforts to implement the full two-step method in this way at Haltenbanken produced inconsistent results with fluctuations in estimated pore pressure reflecting some of the fluctuations in the density logs. We suspect that variations in the mineralogical composition of the mudstones are responsible.Keywords: Mudstone; Pore pressure; Clay diagenesis; Normal compaction; Disequilibrium compaction; Unloading; Budge-Fudge; Eaton
Highlights We introduce the normal compaction surface for diagenetically altered mudstones. Eaton's method gives poor results where overpressure generation mechanisms vary. Separate accounting for disequilibrium compaction and unloading is required. In principle, a two-step method can be implemented using density and sonic logs. The Budge-Fudge approach offers a partial solution and basis for a two-step method.3