The olfactory system is capable of detecting and distinguishing thousands of environmental odorants that play a key role in reproduction, social behaviours including pheromones influenced classical events. Membrane secretary odorant binding proteins (OBPs) are soluble lipocalins, localized in the nasal membrane of mammals. They bind and carry odorants within the nasal epithelium to putative olfactory transmembrane receptors (ORs). While the existence of OBPs and their significant functions are very well known in insects and laboratory mammals, there is little information about the species-specific OBPs in buffaloes. In fact, the OBP of nasal epithelium has not yet been exploited to develop a suitable technique to detect estrus which is being reported as a difficult task in buffalo. In the present study, using molecular biology and protein engineering approaches, we have cloned six novel OBP isoforms from buffalo nasal epithelium (bnOBPs). Furthermore, 3D model was developed and molecular-docking, dynamics experiments were performed by In-silico approach. In particular, we found four residues (Phe104, Phe134, Phe69 and Asn118) from OBP1a, which had strong binding affinities towards two sex pheromones, specifically oleic acid and p-cresol. We expressed this protein in Escherichia coli to examine its involvement in the sex pheromone perception from female buffalo urine and validated through fluorescence quenching studies. Interestingly, fluorescence binding experiments also showed similar strong binding affinities of OBP1a to oleic acid and p-cresol. By using structural data, the binding specificity is also verified by site-directed mutagenesis of the four residues followed by in-vitro binding assays. Our results enable to better understand the functions of different nasal epithelium OBPs in buffaloes. They also lead to improved understanding of the interaction between olfactory proteins and odorants to develop highly selective biosensing devices for non-invasive detection of estrus in buffaloes.