To provide effective communication in the wireless mesh network (WMN), several algorithms have been proposed. Since the possibilities of numerous failures always exist during communication, resiliency has been proven to be an important aspect for WMN to recover from these failures. In general, resiliency is the diligence of the reliability and availability in network. Several types of resiliency based routing algorithms have been proposed (i.e., Resilient Multicast, ROMER, etc.). Resilient Multicast establishes a two-node disjoint path and ROMER uses a credit-based approach to provide resiliency in the network. However, these proposed approaches have some disadvantages in terms of network throughput and network congestion. Previously, the buffer based routing (BBR) approach has been proposed to overcome these disadvantages. We proved earlier that BBR is more efficient in regards to w.r.t throughput, network performance, and reliability. In this paper, we consider the node/link failure issues and analogous performance of BBR. For these items we have proposed a resilient packet transmission (RPT) algorithm as a remedy for BBR during these types of failures. We also share the comparative performance analysis of previous approaches as compared to our proposed approach. Network throughput, network congestion, and resiliency against node/link failure are particular performance metrics that are examined over different sized WMNs.