Observation of quantized vortices in non-equilibrium polariton condensates has been reported either by spontaneous formation and pinning in the presence of disorder or by imprinting them onto the signal or idler of an optical parametric oscillator (OPO). Here, we report a detailed analysis of the creation and annihilation of polariton vortex-antivortex pairs in the signal state of a polariton OPO by means of a short optical Gaussian pulse at a certain finite pump wave-vector. A time-resolved, interferometric analysis of the emission allows us to extract the phase of the perturbed condensate and to reveal the dynamics of the supercurrents created by the pulsed probe. This flow is responsible for the appearance of the topological defects when counter-propagating to the underlying currents of the OPO signal. A 21, 367 (2004). 32. For the supercurrent calculations, eventual phase jumps between 0 and 2π, where the gradient of the phase is not well defined, (see, for example the region between the white arrows in the Fig. 3 (a)), are circumvented using ∇Φ s (r,t) = −i∇ exp (iΦ s (r,t)) / exp (iΦ s (r,t)).