Since February 2022, the full-scale war in Ukraine has been strongly affecting society and economy in Ukraine and beyond. Satellite observations are crucial tools to objectively monitor and assess the impacts of the war. We combine satellite-based tropospheric nitrogen dioxide (NO2) and carbon dioxide (CO2) observations to detect and characterize changes in human activities, as both are linked to fossil fuel combustion processes. We show significantly reduced NO2 levels over the major Ukrainian cities, power plants and industrial areas: the NO2 concentrations in the second quarter of 2022 were 15–46% lower than the same quarter during the reference period 2018–2021, which is well below the typical year-to-year variability (5–15%). In the Ukrainian capital Kyiv, the NO2 tropospheric column monthly average in April 2022 was almost 60% smaller than 2019 and 2021, and about 40% smaller than 2020 (the period mostly affected by the COVID-19 restrictions). Such a decrease is consistent with the essential reduction in population and corresponding emissions from the transport and commercial/residential sectors over the major Ukrainian cities. The NO2 reductions observed in the industrial regions of eastern Ukraine reflect the decline in the Ukrainian industrial production during the war (40–50% lower than in 2021), especially from the metallurgic and chemical industry, which also led to a decrease in power demand and corresponding electricity production by thermal power plants (which was 35% lower in 2022 compared to 2021). Satellite observations of land properties and thermal anomalies indicate an anomalous distribution of fire detections along the front line, which are attributable to shelling or other intentional fires, rather than the typical homogeneously distributed fires related to crop harvesting. The results provide timely insights into the impacts of the ongoing war on the Ukrainian society and illustrate how the synergic use of satellite observations from multiple platforms can be useful in monitoring significant societal changes. Satellite-based observations can mitigate the lack of monitoring capability during war and conflicts and enable the fast assessment of sudden changes in air pollutants and other relevant parameters.