Background The complexity and diversity of brain activity patterns make it difficult to accurately diagnose neurological disorders such epilepsy, Parkinson's disease, schizophrenia, stroke, and Alzheimer's disease. Integrated and effective analysis of multiple data sources is often beyond the scope of traditional diagnostic procedures. With the use of multi-modal data, recent developments in neural network approaches present encouraging opportunities for raising diagnostic accuracy. Objectives A novel approach has been proposed toward the integration of different Nondestructive Evaluation data with EEG signals for improving the diagnosis of neurological disorders such as stroke, epilepsy, Parkinson's disease, and schizophrenia, by leveraging advanced neural network techniques in order to improve the identification and correlation of shared latent features across heterogeneous NDE datasets. Methods We determined the 2D scalogram images using a specific encoder-decoder neural network after transforming the EEG signals using wavelet signal processing. Several NDE data types can be easily integrated for thorough analysis due to this network's ability to extract and correlate important aspects from each form of data. Aiming to uncover common patterns indicating of neurological disorders, the technique was evaluated on datasets containing EEG signals and corresponding NDE data. Results Our method demonstrated a significant improvement in diagnostic accuracy and efficiency. The encoder-decoder network effectively identified shared latent features across the heterogeneous NDE datasets, leading to more precise and reliable diagnoses. The fusion of multi-modality NDE data with EEG signals provided a robust framework for the automatic identification of multiple neurological disorders. Conclusions This innovative approach represents a substantial advancement in the field of neurological disorder diagnosis. By integrating diverse NDE data with EEG signals through advanced neural network techniques, we have developed a method that enhances the accuracy and efficiency of diagnosing multiple neurological conditions. This fusion of multi-modality data has the potential to revolutionize current diagnostic practices in neurology, paving the way for more precise and automated identification of neurological disorders.