Livestock and poultry play a significant role in human nutrition by converting agricultural by-products into high-quality proteins. To meet the growing demand for safe animal protein, genetic improvement of livestock must be done sustainably while minimizing negative environmental impacts. Transposable elements (TE) are important components of livestock and poultry genomes, contributing to their genetic diversity, chromatin states, gene regulatory networks, and complex traits of economic value. However, compared to other species, research on TE in livestock and poultry is still in its early stages. In this review, we analyze 72 studies published in the past 20 years, summarize the TE composition in livestock and poultry genomes, and focus on their potential roles in functional genomics. We also discuss bioinformatic tools and strategies for integrating multi-omics data with TE, and explore future directions, feasibility, and challenges of TE research in livestock and poultry. In addition, we suggest strategies to apply TE in basic biological research and animal breeding. Our goal is to provide a new perspective on the importance of TE in livestock and poultry genomes.