Materials scientists and engineers desire to have an impact. In this Progress Report we postulate a close correlation between impact - whether academic, technological, or scientific - and simple solutions, here defined as solutions that are inexpensive, reliable, predictable, highly performing, "stackable" (i.e., they can be combined and compounded with little increase in complexity), and "hackable" (i.e., they can be easily modified and optimized). In light of examples and our own experience, we propose how impact can be pursued systematically in materials research through a simplicity-driven approach to discovery-driven or problem-driven research.