2023
DOI: 10.7250/itms-2023-0003
|View full text |Cite
|
Sign up to set email alerts
|

Building Minimum Spanning Trees under Maximum Edge Length Constraint

Vadim Romanuke

Abstract: Given an initial set of planar nodes, the problem is to build a minimum spanning tree connecting the maximum possible number of nodes by not exceeding the maximum edge length. To obtain a set of edges, a Delaunay triangulation is performed over the initial set of nodes. Distances between every pair of the nodes in respective edges are calculated used as graph weights. The edges whose length exceeds the maximum edge length are removed. A minimum spanning tree is built over every disconnected graph. The minimum … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 40 publications
0
0
0
Order By: Relevance