This article describes the cyclic loading of jammed granular systems represented by vacuum-packed particles in compression and tension, focusing on the influence of the properties of the granular material on the mechanical response. A jammed granular system is represented by a cylindrical sample filled with polymer granules (vacuum-packed particles) and is examined in symmetric cyclic compression and tension for up to 2000 cycles and at selected values of underpressure, i.e., 0.01, 0.04 and 0.07 MPa. Force and displacement are analyzed during the test, as well as changes in granule morphology by means of microscopic observations. The conducted tests indicate that it is possible to acquire repetitive results of maximum forces in the analyzed loading rage with the condition that granules do not plasticize during loading, i.e., they are resistant to damage during loading.