New parameterizations for the spectral dissipation of wind-generated waves are proposed. The rates of dissipation have no predetermined spectral shapes and are functions of the wave spectrum, in a way consistent with observation of wave breaking and swell dissipation properties. Namely, swell dissipation is nonlinear and proportional to the swell steepness, and wave breaking only affects spectral components such that the non-dimensional spectrum exceeds the threshold at which waves are observed to start breaking. An additional source of short wave dissipation due to long wave breaking is introduced, together with a reduction of wind-wave generation term for short waves, otherwise taken from Janssen (J. Phys. Oceanogr. 1991). These parameterizations are combined and calibrated with the Discrete Interaction Approximation of Hasselmann et al. (J. Phys. Oceangr. 1985) for the nonlinear interactions. Parameters are adjusted to reproduce observed shapes of directional wave spectra, and the variability of spectral moments with wind speed and wave height. The wave energy balance is verified in a wide range of conditions and scales, from the global ocean to coastal settings. Wave height, peak and mean periods, and spectral data are validated using in situ and remote sensing data. Some systematic defects are still present, but the parameterizations probably yield the most accurate overall estimate of wave parameters to date. Perspectives for further improvement are also given.