Solute–surface interactions have garnered considerable interest in recent years as a novel control mechanism for driving unique fluid dynamics and particle transport with potential applications in fields such as biomedicine, the development of microfluidic devices and enhanced oil recovery. In this study, we will discuss dispersion induced by the diffusioosmotic motion near a charged wall in the presence of a solute concentration gradient. Here, we introduce a plug of salt with a Gaussian distribution at the centre of a channel with no background flow. As the solute diffuses, the concentration gradient drives a diffusioosmotic slip flow at the walls, which results in a recirculating flow in the channel; this, in turn, drives an advective flux of the solute concentration. This effect leads to cross-stream diffusion of the solute, altering the effective diffusivity of the solute as it diffuses along the channel. We derive theoretical predictions for the solute dynamics using a multiple-time-scale analysis to quantify the dispersion driven by the solute–surface interactions. Furthermore, we derive a cross-sectionally averaged concentration equation with an effective diffusivity analogous to that from Taylor dispersion. In addition, we use numerical simulations to validate our theoretical predictions.