Background
Ralstonia solanacearum species complex (RSSC) strains are destructive plant pathogenic bacteria and the causative agents of bacterial wilt disease, infecting over 200 plant species worldwide. In addition to chromosomal genes, their virulence is mediated by mobile genetic elements including integrated DNA of bacteriophages, i.e., prophages, which may carry fitness-associated auxiliary genes or modulate host gene expression. Although experimental studies have characterised several prophages that shape RSSC virulence, the global diversity, distribution, and wider functional gene content of RSSC prophages are unknown. In this study, prophages were identified in a diverse collection of 192 RSSC draft genome assemblies originating from six continents.
Results
Prophages were identified bioinformatically and their diversity investigated using genetic distance measures, gene content, GC, and total length. Prophage distributions were characterised using metadata on RSSC strain geographic origin and lineage classification (phylotypes), and their functional gene content was assessed by identifying putative prophage-encoded auxiliary genes. In total, 313 intact prophages were identified, forming ten genetically distinct clusters. These included six prophage clusters with similarity to the Inoviridae, Myoviridae, and Siphoviridae phage families, and four uncharacterised clusters, possibly representing novel, previously undescribed phages. The prophages had broad geographical distributions, being present across multiple continents. However, they were generally host phylogenetic lineage-specific, and overall, prophage diversity was proportional to the genetic diversity of their hosts. The prophages contained many auxiliary genes involved in metabolism and virulence of both phage and bacteria.
Conclusions
Our results show that while RSSC prophages are highly diverse globally, they make lineage-specific contributions to the RSSC accessory genome, which could have resulted from shared coevolutionary history.