A geographical and causal connection has long been recognized between malaria, Epstein-Barr virus (EBV) infection and Burkitt's lymphoma (BL), but the underlying mechanisms remain obscure. Potential clues are that the malaria parasite Plasmodium falciparum selectively absorbs vitamin A from the host and depends on it for its biological activities; secondly, alterations in vitamin A (retinoid) metabolism have been implicated in many forms of cancer, including BL. The first author has proposed that the merozoite-stage malaria parasite, emerging from the liver, uses its absorbed vitamin A as a cell membrane destabilizer to invade the red blood cells, causing anemia and other signs and symptoms of the disease as manifestations of an endogenous form of hypervitaminosis A (Mawson AR, Path Global Health 2013;107(3):122-9). Repeated episodes of malaria would therefore be expected to expose the tissues of affected individuals to potentially toxic doses of vitamin A. It is proposed that such episodes activate latent EBV infection, which in turn activates retinoid-responsive genes. Expression of these genes enhances viral replication and induces germinal center (GC) B cell expansion, activation-induced cytidine deaminase (AID) expression, and c-myc translocation, which in turn predisposes to BL. Thus, an endogenous form of retinoid toxicity related to malaria infection may be the common factor linking frequent malaria, EBV infection and BL, whereby prolonged exposure of lymphatic tissues to high concentrations of retinoids may combine to induce B-cell translocation and increase the risk of Burkitt's lymphoma.