Ego-networks are fundamental structures in social graphs, yet the process of
their evolution is still widely unexplored. In an online context, a key
question is how link recommender systems may skew the growth of these networks,
possibly restraining diversity. To shed light on this matter, we analyze the
complete temporal evolution of 170M ego-networks extracted from Flickr and
Tumblr, comparing links that are created spontaneously with those that have
been algorithmically recommended. We find that the evolution of ego-networks is
bursty, community-driven, and characterized by subsequent phases of explosive
diameter increase, slight shrinking, and stabilization. Recommendations favor
popular and well-connected nodes, limiting the diameter expansion. With a
matching experiment aimed at detecting causal relationships from observational
data, we find that the bias introduced by the recommendations fosters global
diversity in the process of neighbor selection. Last, with two link prediction
experiments, we show how insights from our analysis can be used to improve the
effectiveness of social recommender systems.Comment: Proceedings of the 10th ACM International Conference on Web Search
and Data Mining (WSDM 2017), Cambridge, UK. 10 pages, 16 figures, 1 tabl