2019
DOI: 10.3103/s1060992x19030081
|View full text |Cite
|
Sign up to set email alerts
|

Bus Arrival Time Prediction Using Recurrent Neural Network with LSTM Architecture

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
22
0

Year Published

2020
2020
2024
2024

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 18 publications
(22 citation statements)
references
References 23 publications
0
22
0
Order By: Relevance
“…The first important and crucial step of designing a BAT prediction system is selection of the suitable model. These models based on their characteristics and application in field of BAT prediction are mainly divided into four categories: probabilistic models (Abkowitz et al, 1987; Anderson & Goodman, 1957; Dhivyabharathi et al, 2016; Guenthner & Hamat, 1988; Hans et al, 2015a, 2015b; Krbálek & Seba, 2000; Lee et al, 1968; Lin & Bertini, 2004; Tian et al, 2018), historical models (Biagioni et al, 2011; Maiti et al, 2014; Wepulanon et al, 2017), statistical models (Chen et al, 2007; Huang et al, 2021; Patnaik et al, 2004; Sinn et al, 2012; Xiang et al, 2020), shallow machine learning models (Bin et al, 2006; Chen, 2018; Chen et al, 2007; Chien et al, 2002; Fauzan et al, 2019; Hua et al, 2017; Huang et al, 2021; Jalaney & Ganesh, 2020; Ji et al, 2016; Kalaputapu & Demetsky, 1995; Kee et al, 2017; Khamparia & Choudhary, 2019; Lai et al, 2020; Lam et al, 2019; Li, 2017; Lin et al, 2013; Peng et al, 2018; Treethidtaphat et al, 2017; Wang et al, 2014; Yang et al, 2016; Yin et al, 2017; Yu et al, 2010, 2011; Zhang et al, 2017), and deep machine learning models (Agafonov & Yumaganov, 2019; Alam et al, 2020; Han et al, 2020; Huang et al, 2019; Kalaputapu & Demetsky, 1995; Lingqiu et al, 2019; Liu, Sun, & Wang, 2020; Liu, Xu, et al, 2020; Pang et al, 2019; Panovski & Zaharia, 2020; Pa...…”
Section: Discussionmentioning
confidence: 99%
“…The first important and crucial step of designing a BAT prediction system is selection of the suitable model. These models based on their characteristics and application in field of BAT prediction are mainly divided into four categories: probabilistic models (Abkowitz et al, 1987; Anderson & Goodman, 1957; Dhivyabharathi et al, 2016; Guenthner & Hamat, 1988; Hans et al, 2015a, 2015b; Krbálek & Seba, 2000; Lee et al, 1968; Lin & Bertini, 2004; Tian et al, 2018), historical models (Biagioni et al, 2011; Maiti et al, 2014; Wepulanon et al, 2017), statistical models (Chen et al, 2007; Huang et al, 2021; Patnaik et al, 2004; Sinn et al, 2012; Xiang et al, 2020), shallow machine learning models (Bin et al, 2006; Chen, 2018; Chen et al, 2007; Chien et al, 2002; Fauzan et al, 2019; Hua et al, 2017; Huang et al, 2021; Jalaney & Ganesh, 2020; Ji et al, 2016; Kalaputapu & Demetsky, 1995; Kee et al, 2017; Khamparia & Choudhary, 2019; Lai et al, 2020; Lam et al, 2019; Li, 2017; Lin et al, 2013; Peng et al, 2018; Treethidtaphat et al, 2017; Wang et al, 2014; Yang et al, 2016; Yin et al, 2017; Yu et al, 2010, 2011; Zhang et al, 2017), and deep machine learning models (Agafonov & Yumaganov, 2019; Alam et al, 2020; Han et al, 2020; Huang et al, 2019; Kalaputapu & Demetsky, 1995; Lingqiu et al, 2019; Liu, Sun, & Wang, 2020; Liu, Xu, et al, 2020; Pang et al, 2019; Panovski & Zaharia, 2020; Pa...…”
Section: Discussionmentioning
confidence: 99%
“…The attention-based mechanism is combined with another previously suggested mechanism to perform an additional check on the universality of the proposed system. This results in the creation of a blended process known as AttDHSTNet, which also predicts brief crowd flows [ 1 ].…”
Section: Related Workmentioning
confidence: 99%
“…Various types of neural networks have been proposed for bus arrival time predictions, such as feedforward neural networks (e.g.,. ( [27], [28]), recurrent neural networks (e.g., [26], [29]- [31]), or convolutional neural networks (e.g., [17]).…”
Section: B Transit Operationsmentioning
confidence: 99%