2017
DOI: 10.1016/j.ijmedinf.2016.11.003
|View full text |Cite
|
Sign up to set email alerts
|

Business analysis for a sustainable, multi-stakeholder ecosystem for leveraging the Electronic Health Records for Clinical Research (EHR4CR) platform in Europe

Abstract: IntroductionThe Electronic Health Records for Clinical Research (EHR4CR) technological platform has been developed to enable the trustworthy reuse of hospital electronic health records data for clinical research. The EHR4CR platform can enhance and speed up clinical research scenarios: protocol feasibility assessment, patient identification for recruitment in clinical trials, and clinical data exchange, including for reporting serious adverse events. Our objective was to seed a multi-stakeholder ecosystem to e… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2

Citation Types

0
8
0
3

Year Published

2018
2018
2023
2023

Publication Types

Select...
6
1

Relationship

2
5

Authors

Journals

citations
Cited by 16 publications
(11 citation statements)
references
References 39 publications
0
8
0
3
Order By: Relevance
“…There is a limited amount of published information on the development and implementation of an archetype that allows for a continuous and iterative model that involves health informatics, clinical, project management, and study team groups in the creation of tools (feasibility data and potential participant lists) to enhance trial recruitment in a single healthcare system as large as the VA, or uses data from a repository as robust as the CDW. The only other identifiable effort of this magnitude is the EHR4CR project which aims to demonstrate how data held in EMRs can be used to enhance clinical research processes, in a multi-national context, while providing protocol feasibility, patient identification and recruitment, and clinical trial conduct and serious adverse event reporting services [ 30 , 31 ].…”
Section: Discussionmentioning
confidence: 99%
“…There is a limited amount of published information on the development and implementation of an archetype that allows for a continuous and iterative model that involves health informatics, clinical, project management, and study team groups in the creation of tools (feasibility data and potential participant lists) to enhance trial recruitment in a single healthcare system as large as the VA, or uses data from a repository as robust as the CDW. The only other identifiable effort of this magnitude is the EHR4CR project which aims to demonstrate how data held in EMRs can be used to enhance clinical research processes, in a multi-national context, while providing protocol feasibility, patient identification and recruitment, and clinical trial conduct and serious adverse event reporting services [ 30 , 31 ].…”
Section: Discussionmentioning
confidence: 99%
“…To make more concrete the three research directions we mention here, we would like to conclude by discussing an application-oriented and interdisciplinary contribution. In Dupont et al 48 , the focus is on using EHR data to support clinical research distributed among possibly many healthcare institutions. The authors propose a technological platform to allow the sound and secure reuse of hospital EHR data for clinical research (EHR4CR).…”
Section: Discussionmentioning
confidence: 99%
“…En améliorant la précision des analyses de faisabilité des protocoles d'études, en accélérant le ciblage et le recrutement des patients, et en automatisant le transfert et la gestion des données, de nombreuses causes de retards et des coûts importants pourraient être évités. [19]. Data Mining International a adapté au modèle une méthodologie d'évaluation par simulations quantitatives qui a établi que l'exploitation des données de DSE hospitaliers pour la recherche clinique était susceptible de constituer un axe de développement majeur pour les prestataires de ces nouveaux services en Europe [19].…”
Section: Méthodologies Développées Par Le Projet Ehr4crunclassified
“…[19]. Data Mining International a adapté au modèle une méthodologie d'évaluation par simulations quantitatives qui a établi que l'exploitation des données de DSE hospitaliers pour la recherche clinique était susceptible de constituer un axe de développement majeur pour les prestataires de ces nouveaux services en Europe [19]. La prise en compte des hypothèses financières et des incertitudes inhérentes à l'investigation de stratégies innovantes étant essentielle, des analyses de sensibilité probabilistes de type Monte-Carlo ont été utilisées, confirmant la robustesse des résultats.…”
Section: Méthodologies Développées Par Le Projet Ehr4crunclassified
See 1 more Smart Citation