The melanoma differentiation-associated gene-7 (mda-7) is a member of the interleukin-10 cytokine family and a novel tumor suppressor gene. Adenoviral-mediated mda-7 (Ad-mda7) gene transfer has tumor-specific growth inhibitory and proapoptotic effects in a broad spectrum of cancer cells. In breast cancer cells, adenoviral-induced mda-7 expression triggers antiproliferative effects by downregulation of survival signals, such as Bcl-2 and Akt. The anti-human epidermal growth factor receptor-2 (Her-2) monoclonal antibody, Trastuzumab (Herceptin), increases the sensitivity of Her-2/neu-overexpressing breast cancer cells to chemotherapeutic agents and radiotherapy. In this study, we evaluate the effects of treatment with Ad-mda7 and Herceptin combination therapy in a panel of Her-2/neu-overexpressing cell lines, and in established tumors in nude mice. Compared to individual treatments, the combination of Ad-mda7 and Herceptin elicits supra-additive antitumor activity in Her-2/neuoverexpressing tumor cell lines: increased cell death, cell cycle block and apoptosis. The Ad-mda7 and Herceptin interaction was shown to be synergistic by isobologram analysis. Ad-mda7 does not alter cell surface Her-2/neu levels, but the combination of Ad-mda7 þ Herceptin results in increased expression of cell surface E-cadherin with concomitant translocation of b-catenin from the nucleus to the cell membrane. In vivo, the combination of Ad-mda7 and Herceptin showed significantly increased antitumor activity (Po0.003) against Her-2/neu-overexpressing tumors. These data suggest that the combination of Ad-mda7 with Herceptin may be a novel therapy for breast cancer patients whose tumors overexpress Her-2/neu. The observed synergistic effect may improve treatment options for otherwise poorly responsive, Her-2-positive, breast cancer patients. Cancer Gene Therapy (2006) 13, 958-968.