The Arabian Peninsula is a region characterized by diverse climatic conditions due to its location and geomorphological characteristics. Its precipitation patterns are characterized by very low annual amounts with great seasonal and spatial variability. Moreover, extreme events often lead to flooding and pose threat to human life and activities. Towards a better understanding of the spatiotemporal features of precipitation in the region, a thirty-year (1986-2015) climatic analysis has been prepared with the aid of the state-of-the-art numerical modeling system RAMS/ICLAMS. Its two-way interactive nesting capabilities, explicit cloud microphysical schemes with seven categories of hydrometeors and the ability to handle dust aerosols as predictive quantities are significant advantages over an area where dust is a dominant factor. An extended evaluation based on in situ measurements and satellite records revealed a good model behavior. The analysis was performed in three main components; the mean climatic characteristics, the rainfall trends and the extreme cases. The extremes are analyzed under the principles of the extreme value theory, focusing not only on the duration but also on the intensity of the events. The annual and monthly rainfall patterns are investigated and discussed. The spatial distribution of the precipitation trends revealed insignificant percentage differences in the examined period. Furthermore, it was demonstrated that the eastern part and the top half of the western Arabian Peninsula presented the lowest risk associated with extreme events. Apart from the pure scientific interest, the present study provides useful information for different sectors of society and economy, such as civil protection, constructions and reinsurance.