High-performance computing (HPC) plays a crucial role in scientific computing, and the efficient utilization of HPC to accomplish computational tasks remains a focal point of research. This study addresses the issue of parameter tuning for Earth system models by proposing a comprehensive solution based on the concept of scientific workflows. This solution encompasses detailed methods from sensitivity analysis to parameter tuning and incorporates various approaches to enhance result accuracy. We validated the reliability of our methods using five cases in the Single Column Atmosphere Model (SCAM). Specifically, we investigated the influence of fluctuations of 11 typical parameters on 10 output variables. The experimental results show that the magnitude of the impact on the results varies significantly when different parameters are perturbed. These findings will help researchers develop more reasonable parameterization schemes for different regions and seasons.