Tuberculosis disease (TB) may progress at different rates and have different outcomes. Neutrophils have been implicated in TB progression; however, data on their role during TB are controversial. Here we show that in mice, TB progression is associated with the accumulation of cells that express neutrophilic markers Gr-1 and Ly-6G, but do not belong to conventional neutrophils. The cells exhibit unsegmented nuclei, have Gr-1dimLy-6GdimCD11b+ phenotype and express F4/80, CD49d, Ly-6C, CD117, CD135 markers characteristic not of neutrophils, but of immature myeloid cells. The cells accumulate in the lungs, bone marrow, spleen and blood at the advanced (pre-lethal) stage of M. tuberculosis infection and represent a heterogeneous population of myeloid cells at different stages of their differentiation. The accumulation of Gr-1dimCD11b+ cells is accompanied by the disappearance of conventional neutrophils (Gr-1hiLy-6Ghi-expressing cells). The Gr-1dimCD11b+ cells suppress T cell proliferation and IFN-γ production in vitro via NO-dependent mechanisms, i.e. they exhibit characteristics of myeloid-derived suppressor cells (MDSCs). These results document the generation of MDSCs during TB, suggesting their role in TB pathogenesis, and arguing that neutrophils do not contribute to TB pathology at the advanced disease stage.