This paper presents the results of research of C-Pd composite films obtained by the physical vapor deposition and chemical vapor deposition method. These films will be applied as hydrogen sensors. It has been examined whether the substrate has an impact on morphology and topologies of the C-Pd composite and whether the thermal conductivity of the substrate has an impact on the average size of the Pd nanoparticles. Substrates such as Al2O3, SiO2, Si, and Mo were used, and in the physical vapor deposition process fullerene (C60) and palladium acetate were deposited. Some of the samples were examined microscopically, while another part was modified in the chemical vapor deposition process in the presence of xylene. It was found that the average size of the Pd nanoparticles prepared in the physical vapor deposition process is independent of the substrate for all of the substrates used in the present experiment. During the chemical vapor deposition process an increase of the size of the Pd nanoparticles was observed -as expected. What is more, we noticed a weak relation between the size of the Pd nanoparticles and the type of substrate on which the C-Pd composite was deposited.