Nrf1/Tfam/MGMT and ATP5A1 might be a pivotal network in cardiovascular diseaseinducing obesity. Therefore, we evaluated eight weeks of exercise, caloric restriction, and spirulina algae consumption on the heart in obese rats. In this study, obese rats were compared with a healthy group. First, we induced obese rats with a 60%-high-fat diet. Then, after eight weeks, obese rats were randomly divided into eight groups: obese rats without treatment (HFD), obese rats treated with spirulina algae (HFD-SA), obese rats conducted exercise (HFD-EX), obese rats treated with spirulina algae and exercise (HFD-SA+EX), obese rats treated with caloric restriction (HFD-CR), obese rats treated with caloric restriction and exercise (HFD-CR+EX), obese rats treated with spirulina algae and caloric restriction (HFD-SA+CR), and obese rats treated with SA+CR+EX (HFD-SA+CR+EX). Also, the exercise protocol was performed for eight weeks, three sessions per week at an intensity of 80%-110% of maximum running speed. The spirulina algae were consumed by gavage (100 mg/kg/day), and caloric restriction used 60% of the food consumed. We found that SA+CR+EX significantly modified the Nrf1/Tfam/MGMT and ATP5A1 network in cardiovascular diseaseinducing obesity rats (p < .01). Moreover, we predicted SA could be bound to Tfam and MGMT protein targets. Hence, exercise, caloric restriction, and spirulina algae had a synergistic effect on mitochondrial biogenesis in the heart tissue of obese rats (p < .01).