Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The automatic registration of infrared and visible images in vehicular imaging systems remains challenging in vision-assisted driving systems because of differences in imaging mechanisms. Existing registration methods often fail to accurately register infrared and visible images in vehicular imaging systems due to numerous spurious points during feature extraction, unstable feature descriptions, and low feature matching efficiency. To address these issues, a robust and efficient registration of infrared and visible images for vehicular imaging systems is proposed. In the feature extraction stage, we propose a structural similarity point extractor (SSPE) that extracts feature points using the structural similarity between weighted phase congruency (PC) maps and gradient magnitude (GM) maps. This approach effectively suppresses invalid feature points while ensuring the extraction of stable and reliable ones. In the feature description stage, we design a rotation-invariant feature descriptor (RIFD) that comprehensively describes the attributes of feature points, thereby enhancing their discriminative power. In the feature matching stage, we propose an effective coarse-to-fine matching strategy (EC2F) that improves the matching efficiency through nearest neighbor matching and threshold-based fast sample consensus (FSC), while improving registration accuracy through coordinate-based iterative optimization. Registration experiments on public datasets and a self-established dataset demonstrate the superior performance of our proposed method, and also confirm its effectiveness in real vehicular environments.
The automatic registration of infrared and visible images in vehicular imaging systems remains challenging in vision-assisted driving systems because of differences in imaging mechanisms. Existing registration methods often fail to accurately register infrared and visible images in vehicular imaging systems due to numerous spurious points during feature extraction, unstable feature descriptions, and low feature matching efficiency. To address these issues, a robust and efficient registration of infrared and visible images for vehicular imaging systems is proposed. In the feature extraction stage, we propose a structural similarity point extractor (SSPE) that extracts feature points using the structural similarity between weighted phase congruency (PC) maps and gradient magnitude (GM) maps. This approach effectively suppresses invalid feature points while ensuring the extraction of stable and reliable ones. In the feature description stage, we design a rotation-invariant feature descriptor (RIFD) that comprehensively describes the attributes of feature points, thereby enhancing their discriminative power. In the feature matching stage, we propose an effective coarse-to-fine matching strategy (EC2F) that improves the matching efficiency through nearest neighbor matching and threshold-based fast sample consensus (FSC), while improving registration accuracy through coordinate-based iterative optimization. Registration experiments on public datasets and a self-established dataset demonstrate the superior performance of our proposed method, and also confirm its effectiveness in real vehicular environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.