Toxoplasma gondii has evolved different developmental stages of tachyzoites for disseminating during acute infection and bradyzoites for establishing chronic infection. Calcium ion (Ca2+) signaling tightly regulates the lytic cycle of tachyzoites by controlling microneme secretion and motility to drive egress. However, the roles of Ca2+ signaling pathways in bradyzoites remain largely unknown. Here we show that Ca2+ signals and egress by bradyzoites in response to agonists are highly restricted. Development of dual-reporter parasites revealed dampened calcium responses and minimal microneme secretion by bradyzoites induced in vitro or harvested from infected mice and tested ex vivo. Ratiometric Ca2+ imaging demonstrated lower Ca2+ basal levels, reduced magnitude, and slower Ca2+ kinetics in bradyzoites compared with tachyzoites stimulated with agonists. Diminished responses in bradyzoites were associated with down-regulation of calcium ATPases involved in intracellular Ca2+ storage in the endoplasmic reticulum (ER) and acidocalcisome. Once liberated from cysts by trypsin digestion, bradyzoites displayed weaker gliding motility associated with Ca2+ oscillations compared with tachyzoites, although gliding motility of bradyzoites was enhanced by uptake of exogenous Ca2+. Collectively, our findings indicate that bradyzoites exhibit dampened Ca2+ signaling due to a decreased amount of stored Ca2+, limiting microneme secretion and egress, likely constituting an adaptation to their long-term intracellular niche.