Autosomal dominant polycystic kidney disease is characterized by the loss-of-function of a signaling complex involving polycystin-1 and polycystin-2 (TRPP2, an ion channel of the TRP superfamily), resulting in a disturbance in intracellular Ca 2؉ signaling. Here, we identified the molecular determinants of the interaction between TRPP2 and the inositol 1,4,5-trisphosphate receptor (IP 3 R), an intracellular Ca 2؉ channel in the endoplasmic reticulum. Glutathione S-transferase pulldown experiments combined with mutational analysis led to the identification of an acidic cluster in the C-terminal cytoplasmic tail of TRPP2 and a cluster of positively charged residues in the N-terminal ligand-binding domain of the IP 3 R as directly responsible for the interaction. To investigate the functional relevance of TRPP2 in the endoplasmic reticulum, we re-introduced the protein in TRPP2 ؊/؊ mouse renal epithelial cells using an adenoviral expression system. signaling associated with pathological TRPP2 mutations and therefore contribute to the development of autosomal dominant polycystic kidney disease.
Autosomal dominant polycystic kidney disease (ADPKD)4 is an inherited human disorder that affects more than six million people worldwide and is the most common monogenic cause of kidney failure in humans (1). ADPKD results in end-stage renal disease in ϳ50% of the affected individuals by the age of 60. ADPKD arises as a consequence of mutations of two genes PKD1 and PKD2, encoding integral membrane proteins polycystin-1 (PKD1, ϳ460 kDa) and polycystin-2 (TRPP2, ϳ110 kDa), respectively. Most mutations identified in affected families appear to truncate and (or) inactivate either of both proteins (2-5). Mutations in PKD1 account for the vast majority (ϳ85%) of patients with ADPKD and are associated with a more severe clinical presentation and earlier onset of end-stage renal disease than the PKD2 phenotype (4). However, in all other aspects, PKD1 and PKD2 mutations produce virtually indistinguishable disease manifestations, indicating that the two proteins might function in a common signaling pathway involved in maintaining the terminally differentiated state of renal epithelial cells.TRPP2 is a 968-amino acid (aa) protein with six predicted transmembrane domains and is highly conserved among multicellular organisms and widely expressed in various tissues (2). Structural analyses indicate that TRPP2 contains several functional domains in its C-terminal tail. There are two Ca 2ϩ -binding sites (aa 680 -796) arranged in a typical and an atypical EF-hand motif, which could be involved in a Ca 2ϩ -mediated regulation of TRPP2 (6). An endoplasmic reticulum (ER) retention signal (aa 787-820) (7) and a coiled-coil domain (aa 839 -919), responsible for homo-and heterodimerization (8,9), are also present. Recently, it was reported that this coiled-coil domain was responsible for formation of a TRPP2 trimer that interacts with PKD1 in the plasma membrane (9).