It is difficult to characterize the variation of corrosion resistance of the narrow areas in friction stir welding (FSW) joints due to the large temperature gradient. In this paper, the welding thermal simulation was performed to simulate the heat affected zone (HAZ) and thermo-mechanical affected zone (TMAZ) of the FSW 7075-T6 aluminum alloy, and the corrosion resistance and microstructure of the simulated samples were studied. Results show that the corrosion potential changes greatly under different thermal simulation temperatures. The pitting corrosion of the HAZ simulated samples presents two pitting potentials, but for the TMAZ simulated samples, two pitting potentials will gradually evolve to one pitting potential with the increase of the maximum temperature. The electrochemical impedance spectroscopy results show that the corrosion mechanism of the HAZ and TMAZ is completely inconsistent, which is related to the differences in precipitate and grain characteristics.