2023
DOI: 10.1587/transfun.2022eap1019
|View full text |Cite
|
Sign up to set email alerts
|

CAA-Net: End-to-End Two-Branch Feature Attention Network for Single Image Dehazing

Abstract: In this paper, we propose an end-to-end two-branch feature attention network. The network is mainly used for single image dehazing. The network consists of two branches, we call it CAA-Net: 1) A U-NET network composed of different-level feature fusion based on attention (FEPA) structure and residual dense block (RDB). In order to make full use of all the hierarchical features of the image, we use RDB. RDB contains dense connected layers and local feature fusion with local residual learning.We also propose a st… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 28 publications
0
0
0
Order By: Relevance