Semiconducting nanoparticles (NPs) find applications in many fields, with a recent focus on medicine and biology. Functionalization of the surface of NPs is necessary, and one of the most commonly employed techniques is ligand exchange (LE). In this paper, the study of pH influence on LE reaction for different types of cadmium-based NPs (quantum dots, nanorods, and nanoplates) is presented. Hydrophobic NPs were transferred to the nonorganic medium by functionalization with D-penicillamine (DPA). The LE procedure was conducted at four different pH levels (4, 7, 9, and 11), and obtained hydrophilic NPs were dispersed in phosphate buffer. Results show that the most effective procedure resulted from a reaction carried at pH = 4; however, NPs with higher photoluminescence intensity were obtained when pH = 11 was used. Comparable emission was achieved from samples at pH = 4 and pH = 9. The least effective transfer, resulting in unstable NPs, occurred when the procedure was conducted at pH = 7.