Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Rhizosphere microorganisms are crucial for enhancing plant stress resistance. Current studies have shown that Arbuscular mycorrhizal fungi (AMF) can facilitate vegetation recovery in heavy metal-contaminated soils through interactions with rhizosphere microbiota. However, the mechanisms by which AMF influences rhizosphere microbiota and plant growth under cadmium (Cd) stress remain unclear. In this study, Lolium perenne L. was inoculated with AMF (Rhizophagus irregularis) and grown in soils supplemented with Cd (0 mg kg−1, Cd0; 100 mg kg−1, Cd100). Plant biomass, antioxidant enzyme activities, peroxide content, Cd uptake, and rhizosphere bacterial community composition were evaluated. AMF inoculation reduced Cd influx in aboveground tissues, enhanced nutrient availability in the rhizosphere, and mitigated Cd biotoxicity. Additionally, AMF inoculation improved the scavenging efficiency of reactive oxygen species and alleviated oxidative stress in L. perenne, thereby mitigating biomass reduction. Moreover, AMF treatment increased leaf and root biomass by 342.94% and 41.31%, respectively. Furthermore, under the same Cd concentration, AMF inoculation increased bacterial diversity (as measured by the Shannon index) and reduced bacterial enrichment (as indicated by the ACE index). AMF promoted the enrichment of certain bacterial genera (e.g., Proteobacteria and Actinobacteria) in the Cd100 group. These findings suggest that AMF regulated the composition of the rhizosphere bacterial community and promoted the growth of potentially beneficial microorganisms, thereby enhancing the resistance of L. perenne to Cd stress. Cd contamination in soil severely limits plant growth and threatens ecosystem stability, highlighting the need to understand how AMF and rhizosphere microbes can enhance Cd tolerance in L. perenne. Therefore, inoculating plants with AMF is a promising strategy for enhancing their adaptability to Cd-contaminated soils.
Rhizosphere microorganisms are crucial for enhancing plant stress resistance. Current studies have shown that Arbuscular mycorrhizal fungi (AMF) can facilitate vegetation recovery in heavy metal-contaminated soils through interactions with rhizosphere microbiota. However, the mechanisms by which AMF influences rhizosphere microbiota and plant growth under cadmium (Cd) stress remain unclear. In this study, Lolium perenne L. was inoculated with AMF (Rhizophagus irregularis) and grown in soils supplemented with Cd (0 mg kg−1, Cd0; 100 mg kg−1, Cd100). Plant biomass, antioxidant enzyme activities, peroxide content, Cd uptake, and rhizosphere bacterial community composition were evaluated. AMF inoculation reduced Cd influx in aboveground tissues, enhanced nutrient availability in the rhizosphere, and mitigated Cd biotoxicity. Additionally, AMF inoculation improved the scavenging efficiency of reactive oxygen species and alleviated oxidative stress in L. perenne, thereby mitigating biomass reduction. Moreover, AMF treatment increased leaf and root biomass by 342.94% and 41.31%, respectively. Furthermore, under the same Cd concentration, AMF inoculation increased bacterial diversity (as measured by the Shannon index) and reduced bacterial enrichment (as indicated by the ACE index). AMF promoted the enrichment of certain bacterial genera (e.g., Proteobacteria and Actinobacteria) in the Cd100 group. These findings suggest that AMF regulated the composition of the rhizosphere bacterial community and promoted the growth of potentially beneficial microorganisms, thereby enhancing the resistance of L. perenne to Cd stress. Cd contamination in soil severely limits plant growth and threatens ecosystem stability, highlighting the need to understand how AMF and rhizosphere microbes can enhance Cd tolerance in L. perenne. Therefore, inoculating plants with AMF is a promising strategy for enhancing their adaptability to Cd-contaminated soils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.