We used a phylogenetically based comparative approach to evaluate the potential for physiological studies to reveal patterns of diversity in traits related to susceptibility to an environmental stressor, the trace metal cadmium (Cd). Physiological traits related to Cd bioaccumulation, compartmentalization, and ultimately susceptibility were measured in 21 aquatic insect species representing the orders Ephemeroptera, Plecoptera, and Trichoptera. We mapped these experimentally derived physiological traits onto a phylogeny and quantified the tendency for related species to be similar (phylogenetic signal). All traits related to Cd bioaccumulation and susceptibility exhibited statistically significant phylogenetic signal, although the signal strength varied among traits. Conventional and phylogenetically based regression models were compared, revealing great variability within orders but consistent, strong differences among insect families. Uptake and elimination rate constants were positively correlated among species, but only when effects of body size and phylogeny were incorporated in the analysis. Together, uptake and elimination rates predicted dramatic Cd bioaccumulation differences among species that agreed with field-based measurements. We discovered a potential tradeoff between the ability to eliminate Cd and the ability to detoxify it across species, particularly mayflies. The best-fit regression models were driven by phylogenetic parameters (especially differences among families) rather than functional traits, suggesting that it may eventually be possible to predict a taxon's physiological performance based on its phylogenetic position, provided adequate physiological information is available for close relatives. There appears to be great potential for evolutionary physiological approaches to augment our understanding of insect responses to environmental stressors in nature.comparative methods ͉ evolutionary physiology ͉ bioaccumulation ͉ phylogeny ͉ tradeoff W ith Ϸ6,500 species described to date in North America (1), aquatic insects are a diverse and ecologically important group (2), particularly in rivers and streams. For example, the orders Ephemeroptera, Plecoptera, and Trichoptera (EPT taxa) include 58 recognized families and Ϸ2,700 species (1). Among these many lineages, great diversity exists in morphology, life history characteristics, and physiology stemming from a long and complex evolutionary history. Although the origins of the Ephemeroptera are unknown (3), a general paradigm of the terrestrial ancestry of aquatic insects is widely accepted, with numerous invasions of freshwater habitats hypothesized throughout evolutionary history (4). Many of these invasions have entailed adaptive ''solutions'' that involve complex suites of traits that in combination determine the range of environmental conditions that a given taxon can tolerate.Some traits that arose in response to past environmental challenges may now render certain species relatively more susceptible to modern anthropogenic pollutants....