The aim of this study was to assess human intracranial tumours for their gene expression pattern of the vasoactive peptide adrenomedullin (AM), its receptor (AM-R) and leptin, which exerts multiple biological effects including proliferation and angiogenesis via the leptin receptor (OB-Rb). Gene activity of neuropeptide Y (NPY) was monitored additionally. We investigated whether there was a characteristic gene expression pattern of AM and leptin in different intracranial tumours, depending on their proliferation activity and biological behaviour. We investigated 35 non-functioning pituitary adenomas (including eight null cell, four silent plurihormonal, 23 silent gonadotroph adenomas), seven somatotropinomas, seven prolactinomas, eight meningiomas, five astrocytomas, two glioblastoma multiformes and unaffected temporal lobe (n = 8). Quantitative reverse transcriptase-polymerase chain reaction (TaqMan RT-PCR) was performed. AM mRNA was detectable in all tumour specimens. AM/GAPDH (glyceraldehyde-3-phosphate dehydrogenase) ratio was significantly higher in somatotropinomas, as was AM/CD31 ratio in prolactinomas, compared with inactive adenomas (P < 0.05). AM-R mRNA was found in all tumour subgroups in small quantities but, in general, higher in tumours than in temporal lobe tissue, respectively. AM-R/CD31 ratio was significantly higher in prolactinomas than in inactive adenomas (P < 0.05). Leptin was detectable in very low quantities in each subgroup. OB-Rb gene expression was found in all tumour subgroups, OB-Rb/GAPDH ratio was highest for meningiomas (P < 0.0001, compared with temporal lobe). NPY mRNA was detectable in temporal lobe in higher quantities than in tumours (P < 0.0001), and almost undetectable in prolactinomas and astrocytomas. Our data demonstrate that AM and AM-R, NPY, as well as leptin and OB-Rb, are expressed in various intracranial tumours in humans but their particular function has to be elucidated further. At present, there is no evidence for a cross-talk on transcriptional level between the peptidergic vasodilative system AM and the putative angiogenic and proliferation affecting factor leptin.