The protozoan parasite Toxoplasma gondii relies on calciummediated exocytosis to secrete adhesins on to its surface where they can engage host cell receptors. Increases in intracellular calcium occur in response to Ins(1,4,5)P 3 and caffeine, an agonist of ryanodine-responsive calcium-release channels. We examined lysates and microsomes of T. gondii and detected evidence of cADPR (cyclic ADP ribose) cyclase and hydrolase activities, the two enzymes that control the second messenger cADPR, which causes calcium release from RyR (ryanodine receptor). We also detected endogenous levels of cADPR in extracts of T. gondii. Furthermore, T. gondii microsomes that were loaded with 45 Ca 2+ released calcium when treated with cADPR, and the RyR antagonists 8-bromo-cADPR and Ruthenium Red blocked this response. Although T. gondii microsomes also responded to Ins(1,4,5)P 3 , the inhibition profiles of these calcium-release channels were mutually exclusive. The RyR antagonists 8-bromocADPR and dantrolene inhibited protein secretion and motility in live parasites. These results indicate that RyR calcium-release channels that respond to the second-messenger cADPR play an important role in regulating intracellular Ca 2+ , and hence host cell invasion, in protozoan parasites.