In an effort to make pesticide use safer, more efficient, and sustainable, micro-/nanocarriers are increasingly being utilized in agriculture to deliver pesticide-active agents, thereby reducing quantities and improving effectiveness. In the use of nanopesticides, the choice to further design and prepare pesticide stimulus-responsive nanocarriers based on changes in the plant growth environment (light, temperature, pH, enzymes, etc.) has received more and more attention from researchers. Based on this, this paper examines recent advancements in nanomaterials for the design of stimulus-responsive micro-/nanocarriers. It delves into the intricacies of preparation methods, material enhancements, in vivo/ex vivo controlled release, and application techniques for controlled release formulations. The aim is to provide a crucial reference for harnessing nanotechnology to pursue reduced pesticide use and increased efficiency.