We previously characterized the initial steps in the activation of novel (calcium-permeant) nonselective cation channels (NSCCs) and calcium release-activated calcium channels in primary murine B lymphocytes. Phospholipase C products, namely diacylglycerol and d-myo-inositol 1,4,5-trisphosphate, were identified as proximal intracellular agonists of these respective channels following mechanical stimulation of B cells. However, neither the distal steps in NSCC activation nor the contribution of these channels to sustained mechanical signaling were defined in these previous studies. In this study, single cell measurements of intracellular Ca2+ were used to define the mechanisms of NSCC activation and demonstrate a requirement for arachidonic acid liberated from diacylglycerol. Several arachidonic acid-derived derivatives were identified that trigger Ca2+ entry into B cells, including the lipoxygenase product 5-hydroperoxyeicosatetranenoic acid and the cytochrome P450 hydroxylase product 20-hydroxyeicosatetraenoic; however, the cytochrome P450 epoxygenase product 5,6-epoxyeicosatrienoic acid is primarily responsible for hypotonicity-induced responses. In addition to regulating calcium entry, our data suggest that eicosanoid-activated NSCCs have a separate and direct role in regulating the avidity of integrins on B cells for extracellular matrix proteins, including ICAM-1 and VCAM-1. Thus, in addition to defining a novel osmotically activated signal transduction pathway in B cells, our results have broad implications for understanding how inflammatory mediators dynamically and rapidly regulate B cell adhesion and trafficking.