Sperm motility can be maintained in vitro by incubation in a defined medium under specific conditions. In most studies, the exact role of various constituents of epididymal fluid, including calcium, has remained obscure. Most of the culture media have included millimolar concentrations of calcium, but previous reports have indicated that millimolar calcium inhibits sperm motility. In this present study, we sought the optimum concentration of extracellular calcium required for optimum sperm motility. This study showed that extracellular calcium has a concentration-dependent biphasic role in motility regulation. It promoted motility and velocity at lower (10 µM) concentration whereas notably inhibited it at higher concentrations. When external membrane-bound calcium was removed by ethylene glycol tetraacetic acid, motility decreased considerably. To confirm the motility-inhibiting role of calcium above 10 µM, a sperm motility-stimulating protein (MSP) recently reported from our laboratory was used which at 0.9 μM induces motility in 60-70 % cells. Calcium at 10 µM had no appreciable effect on the motility-promoting activity of the MSP but depressed the activity above 10 µM. Thus, our present results emphasize the biphasic role of extracellular calcium and the importance of its optimum concentration in different buffers and media used for sperm motility initiation.