Background. Lower-grade glioma is an intracranial cancer that may develop into glioblastoma with high mortality. The main objective of our study is to develop microRNA for LGG patients which will provide novel prognostic biomarkers along with therapeutic targets. Methods. Clinicopathological data of LGG patients and their RNA expression profile were downloaded through The Cancer Genome Atlas Relevant expression profiles of RNA, and clinicopathological data of the LGG patients had been extracted from the database of “The Cancer Genome Atlas.” Differential expression analysis had been conducted for identification of the differentially expressed microRNAs as well as mRNAs in LGG samples and normal ones. ROC curves and K–M plots were plotted to confirm performance and for predictive accuracy. For the confirmation of microRNAs as an independent prognostic factor, an independent prognosis analysis was conducted. Moreover, target differentially expressed genes of these identified prognostic microRNAs that were extracted and protein-protein interaction networks were developed. Moreover, the biological functions of signature were determined through Genome Ontology analysis, genome pathway analysis, and Kyoto Encyclopedia of Genes. Results. 7-microRNA signature was identified that has the ability of categorization of individuals with LGG into high- and low-risk groups on the basis of significant difference in survival during training and testing cohorts (P < 0.001). The 7-microRNA signature had appeared to be robust in predictive accuracy (all AUC> 0.65). It was also approved with multivariate Cox regression along with some traditional clinical practices that we can use 7-microRNA signature for therapeutic purposes as a self-regulating predictive OS factor (P < 0.001). KEGG and Gene Ontology (GO) analyses reported that 7-microRNAs had mainly developed in important pathways related with glioma, e.g., the “cAMP signaling pathway,” “glutamatergic synapses,” and “calcium signaling pathway”. Conclusion. A newly discovered 7-microRNA signature could be a potential target for the diagnosis and treatment for LGG patients.