Abstract. Ring polishing is a primary method to polish large aperture planar optics that is widely used in the fabrication of high-power solid-state laser equipment. The relative motion track with the ring polishing is always rotationally symmetrical and the amount of material removal is related to the radius. The height errors are identical when the points are in the same radius, which can largely reduce the coverage area when the subaperture stitching method is used to measure the figure error of the surface. A new sparse lattice for planar optics polished by ring polishing is introduced. The cumulative error is proven small enough for sparse subaperture stitching by the reference of the simulated data. A planar optical element with 200 mm × 200 mm aperture was chosen to test the feasibility of our proposed method. The results indicate that sparse stitching is suitable for measuring a large planar surface polished by ring polishing. The results of two chain lattice are closer to the fully covered lattice than a one chain lattice. However, more measuring time could be saved by the one chain lattice method. So, the usage of different lattices could be adapted for different periods of large aperture planar optical manufacturing. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.