Suitability of AA2024-T3 and AA5083-H111 aluminium sheet alloys for forming operations in room temperature were examined by using forming limit diagrams with different strain paths. In the experimental part, circular bulge, nongrooved tensile as well as grooved tensile specimens were used. This was done to simulate the following: (a) biaxial stretching region (positive range of minor strain), (b) uni-axial strain path and (c) strain path from uni-axial tension to plane strain region of the forming limit diagram, respectively. The effects of combined strain paths coupled with material anisotropy were taken into account in each stage. Tensile properties as well as formability parameters were correlated in accordance with the attained forming limit diagrams. Average plastic strain ratio and planar anisotropy, in addition to work hardening exponents of the samples, were calculated from the test data and the effects on the forming limit diagrams were discussed. Moreover, comparisons were made between experimental and theoretical forming limit diagrams. It is shown that experimental forming limit diagrams are in very good agreement with the theoretical predictions, particularly when BBC2000 yield criteria are used for the M-K model. In addition, theoretical prediction by using the Hill93-Swift model showed small deviation with the experimental forming limit diagrams. Finally, finite element simulations were carried out to investigate the numerical forming limit diagrams through an industrial sheet metal forming simulation software. It was consequently shown that, due to frictional effects resulting from hemispherical-shaped punch, the finite element results depicted small deviation compared to the experimental data.