Abstract. The critical points of the two-layer Ising and Potts models for square lattice have been calculated with high precision using probabilistic cellular automata (PCA) with Glauber alghorithm. The critical temperature is calculated for the isotropic and symmetric case (K x =K y =K z =K), where K x and K y are the nearest-neighbor interactions within each layer in the x and y directions, respectively, and K z is the interlayer coupling. The obtained results are 0.310 and 0.726 for two-layer Ising and Potts models, respectively, that are in good agreement with the accurate values reported by others.