Basis functions with arbitrary quantum numbers can be attained from those with the lowest numbers by applying shift operators. We derive the general expressions and the recurrence relations of these operators for Cartesian basis sets with Gaussian and exponential radial factors. In correspondence, the expressions of molecular integrals involving functions with arbitrary quantum numbers can be obtained by applying these operators on the integrals with the lowest quantum numbers. Since the original form of the shift operators is not appropriate to deal with integrals, we give their representation in terms of derivatives with respect to the parameters on which these integrals explicitly depend. Moreover, we translate the recurrence relations to the new representation and, finally, we analyze the general expressions ot the molecular integrals.