Pulse oximetry for arterial oxygenation monitoring and tissue oximetry for monitoring of cerebral oxygenation or muscle oxygenation are based on quantitative in vivo diffuse optical spectroscopy. However, in both cases the information on absolute or relative concentration of human tissue constituents and especially on hemoglobin oxygenation can often not be retrieved by model-based analysis. An in vivo calibration against an accepted reference measurement can be a practical alternative. Pulse oximeters and most of commercial cerebral tissue oximeters rely on empirical calibration based on invasive controlled human desaturation studies. As invasive in vivo tests on healthy subjects are ethically disputable and should be limited to exceptional cases this calibration practice is unsatisfactory. We present the current status and problems of calibration and validation in pulse oximetry and cerebral tissue oximetry including the pros and cons of in vivo as well as in vitro methods. We emphasize various digital and physical phantom approaches and discuss the prospects of their application and possible further developments.