Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In the present industrial thesis has been developed and implemented with success a measurement strategy that consists of an optical test of validation of the optical functionality of photonic components in the same manufacturing line and in an optical control of complementary quality in the environment of laboratory. The strategy developed has been embodied in the European patent application 18382831.8. The optical validation test is able to validate the optical functionality of the photonic components from the measurement of the distribution of illumination in a close plane through the implementation of two merit functions. The first merit function is associated with the total radiant flux with its corresponding acceptability threshold. The second merit function is associated with the distribution of illumination and analyzes the eccentricity of the irradiance distribution as a discriminating element. The optical quality control, which allows detecting defects in the rejected photonic components at the production line, consists of two phases. The first phase, that measures angles less than 35°, is implemented by adding a mesh of holes to the assembly of the test in line, said mesh acts as a slope selector. The second phase, that measures angles greater than 35°, has been implemented by adding a parabolic reflector to the first phase control. In both phases, merit functions have been developed that facilitate the detection of defects. The first merit function analyzes the position of the spots due to the presence of the mesh. From inverse ray tracing generated by the measured directions, the convergence of the rays is determined. The difference between the vector position of said zone and the nominal position allows us to construct the first quality function. This function has been applied three times: one for the control of angles less than 35° and two for the control of angles greater than 35°, to the set of rays before interacting with the reflector and to the set of rays after said interaction. Likewise, based on the same base information, a second merit function has been applied based on comparing the values of the asymmetry presented by the director cosines (u, v), The second merit function analyzes the irradiance value of the spots. The objective of the merit function and its corresponding criterion is to determine the discrepancies in the irradiance level of the spots with respect to their nominal value. For the set of spots that do not meet the criterion, it is determined to which region they correspond thanks to the reverse ray tracing. To implement the measurement strategy for different photonic components, a laboratory equipment has been developed capable of implementing both the online optical test and the described quality controls. This equipment has been calibrated, both geometrically and energetically, and tests have been carried out on the repeatability of its measurements. The measurement strategy, based on the simulation, allows us to distinguish between the presence of a global displacement of the component, the presence of misalignment between the elements of the component and the presence of a local defect in the optics of the component. The equipment and the measurement strategy have been used together to validate the optical functionality of the first manufactured set of FOT component, which belongs to the telecommunications sector, developed by SnellOptics in consortium with QPO. Moreover, we have analyzed a component that due to its optical functionality has applications in the lighting environment has also been analyzed. Likewise, the success in the development of this industrial thesis of maximum interest has been reflected in the attendance to several international congresses (EOSAM, 2016), (SPIE Europe, 2018) and national (OPTOEL, 2017) as well as to patent application European 18382831.8 En la presente tesis industrial se ha el desarrollado e implementado con éxtio una estrategia de medida que consiste en un test óptico de validación de la funcionalidad óptica de componentes fotónicos en la misma línea de fabricación y en un control óptico de calidad complementario en el entorno de laboratorio. La estrategia desarrollada ha sido plasmada en la solicitud de patente europea 18382831.8. El test óptico de validación es capaz de validar la funcionalidad óptica de los componentes fotónicos a partir de la medida de la distribución de iluminación en un plano cercano mediante la implementación de dos funciones de mérito. La primera función de mérito está asociada al flujo radiante total junto con su correspondiente umbral de aceptabilidad. La segunda función de mérito está asociada a la distribución de iluminación y analiza la excentricidad de la distribución de irradiancia como elemento discriminador. El control óptico de calidad, que permiten detectar defectos en los componentes fotónicos rechazados en línea de producción, consta de dos fases. La primera, para la medida de ángulos menores de 35°, se implementa añadiendo una malla de agujeros al montaje del test en línea, dicha malla actúa como selector de pendientes. La segunda, para la medida de ángulos mayores de 35°, se ha implementado añadiendo un reflector parabólico al primer control. En ambas fases se han desarrollado funciones de mérito que facilitan la detección de los defectos. La primera función de mérito analiza de la posición de los spots a causa de la presencia de la malla. A partir del trazado inverso de rayos generados mediante el conjunto de direcciones medido, se determina la zona de convergencia de éstos. La diferencia entre el vector posición de dicha zona respecto a la posición nominal nos permite construir la primera función de calidad. Esta función se ha aplicado en tres ocasiones: una para el control de ángulos menores de 35° y dos para el control de mayores de 35°, al conjunto de rayos antes de interaccionar con el reflector y al conjunto de después de dicha interacción. Asimismo, a partir de la misma información base se ha obtenido una segunda función de mérito basada en comparar los valores de la asimetría que presentan los cosenos directores (u,v). La segunda función de mérito analiza el valor de irradiancia de los spots. El objetivo de la función de mérito y de su correspondiente criterio es determinar las discrepancias en el nivel de irradiancia de los spots respecto a su valor nominal. Para el conjunto de spots que no cumplen el criterio se determina a que región corresponden gracias al trazado inverso de rayos. Para implementar la estrategia de medida a distintos componentes fotónicos, se ha desarrollado un equipo de laboratorio capaz de implementar tanto el test óptico en línea como los controles de calidad descritos. Dicho equipo ha sido calibrado, tanto geométricamente como energéticamente, y se han realizado pruebas de repetitividad de sus medidas. La estrategia de medida, apoyándonos en la simulación, nos permite distinguir entre la presencia de un desplazamiento global del componente, la presencia de desalineado entre los elementos del componente y la presencia de un defecto local en la óptica de éste. El equipo y la estrategia de medida se han empleado conjuntamente para validar la funcionalidad óptica de las primeras pruebas de manufactura de un componente FOT, perteneciente al sector de las telecomunicaciones desarrollado por SnellOptics en consorcio con QPO. También se ha analizado un componente que por su funcionalidad óptica tiene aplicaciones en el entorno de la iluminación. Asimismo, el éxito en el desarrollo de la presente tesis industrial de máximo interés se ha plasmado en la asistencia a diversos congresos internacionales (EOSAM, 2016), (SPIE Europe, 2018) y nacional (OPTOEL, 2017) así como a solicitud de patente europea 18382831.8.
In the present industrial thesis has been developed and implemented with success a measurement strategy that consists of an optical test of validation of the optical functionality of photonic components in the same manufacturing line and in an optical control of complementary quality in the environment of laboratory. The strategy developed has been embodied in the European patent application 18382831.8. The optical validation test is able to validate the optical functionality of the photonic components from the measurement of the distribution of illumination in a close plane through the implementation of two merit functions. The first merit function is associated with the total radiant flux with its corresponding acceptability threshold. The second merit function is associated with the distribution of illumination and analyzes the eccentricity of the irradiance distribution as a discriminating element. The optical quality control, which allows detecting defects in the rejected photonic components at the production line, consists of two phases. The first phase, that measures angles less than 35°, is implemented by adding a mesh of holes to the assembly of the test in line, said mesh acts as a slope selector. The second phase, that measures angles greater than 35°, has been implemented by adding a parabolic reflector to the first phase control. In both phases, merit functions have been developed that facilitate the detection of defects. The first merit function analyzes the position of the spots due to the presence of the mesh. From inverse ray tracing generated by the measured directions, the convergence of the rays is determined. The difference between the vector position of said zone and the nominal position allows us to construct the first quality function. This function has been applied three times: one for the control of angles less than 35° and two for the control of angles greater than 35°, to the set of rays before interacting with the reflector and to the set of rays after said interaction. Likewise, based on the same base information, a second merit function has been applied based on comparing the values of the asymmetry presented by the director cosines (u, v), The second merit function analyzes the irradiance value of the spots. The objective of the merit function and its corresponding criterion is to determine the discrepancies in the irradiance level of the spots with respect to their nominal value. For the set of spots that do not meet the criterion, it is determined to which region they correspond thanks to the reverse ray tracing. To implement the measurement strategy for different photonic components, a laboratory equipment has been developed capable of implementing both the online optical test and the described quality controls. This equipment has been calibrated, both geometrically and energetically, and tests have been carried out on the repeatability of its measurements. The measurement strategy, based on the simulation, allows us to distinguish between the presence of a global displacement of the component, the presence of misalignment between the elements of the component and the presence of a local defect in the optics of the component. The equipment and the measurement strategy have been used together to validate the optical functionality of the first manufactured set of FOT component, which belongs to the telecommunications sector, developed by SnellOptics in consortium with QPO. Moreover, we have analyzed a component that due to its optical functionality has applications in the lighting environment has also been analyzed. Likewise, the success in the development of this industrial thesis of maximum interest has been reflected in the attendance to several international congresses (EOSAM, 2016), (SPIE Europe, 2018) and national (OPTOEL, 2017) as well as to patent application European 18382831.8 En la presente tesis industrial se ha el desarrollado e implementado con éxtio una estrategia de medida que consiste en un test óptico de validación de la funcionalidad óptica de componentes fotónicos en la misma línea de fabricación y en un control óptico de calidad complementario en el entorno de laboratorio. La estrategia desarrollada ha sido plasmada en la solicitud de patente europea 18382831.8. El test óptico de validación es capaz de validar la funcionalidad óptica de los componentes fotónicos a partir de la medida de la distribución de iluminación en un plano cercano mediante la implementación de dos funciones de mérito. La primera función de mérito está asociada al flujo radiante total junto con su correspondiente umbral de aceptabilidad. La segunda función de mérito está asociada a la distribución de iluminación y analiza la excentricidad de la distribución de irradiancia como elemento discriminador. El control óptico de calidad, que permiten detectar defectos en los componentes fotónicos rechazados en línea de producción, consta de dos fases. La primera, para la medida de ángulos menores de 35°, se implementa añadiendo una malla de agujeros al montaje del test en línea, dicha malla actúa como selector de pendientes. La segunda, para la medida de ángulos mayores de 35°, se ha implementado añadiendo un reflector parabólico al primer control. En ambas fases se han desarrollado funciones de mérito que facilitan la detección de los defectos. La primera función de mérito analiza de la posición de los spots a causa de la presencia de la malla. A partir del trazado inverso de rayos generados mediante el conjunto de direcciones medido, se determina la zona de convergencia de éstos. La diferencia entre el vector posición de dicha zona respecto a la posición nominal nos permite construir la primera función de calidad. Esta función se ha aplicado en tres ocasiones: una para el control de ángulos menores de 35° y dos para el control de mayores de 35°, al conjunto de rayos antes de interaccionar con el reflector y al conjunto de después de dicha interacción. Asimismo, a partir de la misma información base se ha obtenido una segunda función de mérito basada en comparar los valores de la asimetría que presentan los cosenos directores (u,v). La segunda función de mérito analiza el valor de irradiancia de los spots. El objetivo de la función de mérito y de su correspondiente criterio es determinar las discrepancias en el nivel de irradiancia de los spots respecto a su valor nominal. Para el conjunto de spots que no cumplen el criterio se determina a que región corresponden gracias al trazado inverso de rayos. Para implementar la estrategia de medida a distintos componentes fotónicos, se ha desarrollado un equipo de laboratorio capaz de implementar tanto el test óptico en línea como los controles de calidad descritos. Dicho equipo ha sido calibrado, tanto geométricamente como energéticamente, y se han realizado pruebas de repetitividad de sus medidas. La estrategia de medida, apoyándonos en la simulación, nos permite distinguir entre la presencia de un desplazamiento global del componente, la presencia de desalineado entre los elementos del componente y la presencia de un defecto local en la óptica de éste. El equipo y la estrategia de medida se han empleado conjuntamente para validar la funcionalidad óptica de las primeras pruebas de manufactura de un componente FOT, perteneciente al sector de las telecomunicaciones desarrollado por SnellOptics en consorcio con QPO. También se ha analizado un componente que por su funcionalidad óptica tiene aplicaciones en el entorno de la iluminación. Asimismo, el éxito en el desarrollo de la presente tesis industrial de máximo interés se ha plasmado en la asistencia a diversos congresos internacionales (EOSAM, 2016), (SPIE Europe, 2018) y nacional (OPTOEL, 2017) así como a solicitud de patente europea 18382831.8.
The main quality condition in street lighting is luminance distribution. During the carrying out of the literature, average luminance is the most important parameter to check. The standard BS EN 13201-3 imposes that average luminance must be calculated for the observer placed in the center of each circulating lane. As a consequence, according to these standards, the measurements can be done only on streets without traffic. Stopping the traffic on all lanes is very difficult. This paper proposes a solution for measuring the average luminance from outside the carriageway. The research was performed by simulations/calculations and was validated by field measurements. Imaging sensors were used to measure average luminance, while DIALux EVO 9.1 was used for the simulations. For symmetrical, opposite, and staggered lighting arrangements, average luminance measurements were performed with a digital camera positioned outside of the traffic area, with the equipment placed at the edge of the carriageway, giving similar results with standard measurements, with almost no difference. For single sided lighting arrangements, the differences became unacceptable. In this case, the paper proposes a correction function to calculate the average luminance for the observer placed on the carriageway, based on measurements with a digital camera placed outside the traffic area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.