In the present paper we investigate the possibility of narrowing the depth range of a physical Shack -Hartmann wavefront sensor (SH-WFS) by using coherence gating. We have already demonstrated a low coherence interferometry (LCI) set-up, capable of generating similar spots patterns as a conventional SH-WFS and also capable of eliminating stray reflections. Here, we evaluate the accuracy of wavefront measurements using a coherence-gated (CG)/SH-WFS. This is based on a Mach-Zehnder interferometer combined with a SH-WFS, that implements time-domain (TD)-LCI acquisition. The wavefront measurement errors introduced by the non-uniform distribution of the reference power over the photo-detector array were investigated. The effect on the centroid nodes accuracy due to different numbers of phaseshifting interferometry (PSI) steps applied was also evaluated. This novel technique has the potential of providing depth resolved aberration information, which can guide better correction in adaptive optics assisted OCT and confocal imaging instruments.