The effective deployment of Phasor Measurement Units (PMUs) in Distribution Networks (DNs) requires an enhancement in terms of estimation accuracy beyond the limits of IEEE Std C37.118.1 (IEEE Std), aiming at a Total Vector Error (TVE) in the order of 0.0x% in steady-state test conditions. As a consequence, a rigorous metrological characterization of PMU performance requires a validation system whose accuracy is at least one order of magnitude better than the one of the device under test, i.e. it requires a TVE in the order of 0.00x% in steady-state test conditions and 0.0x% in distorted or dynamic test conditions. In this paper, we describe the hardware and software architecture of a PMU validation system specifically designed for PMUs operating in DNs. We evaluate the quality of the generated test waveforms, and we carry out a thorough metrological characterization of the uncertainty contributions due to generation, acquisition and synchronization stages.